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MINIMUM ENERGY REACTION WHEEL CONTROL FOR A SATELLITE
SCANNING A SMALL CELESTIAL AREA
By William R. Wehrend, Jr., and Michael J. Bondil

Ames Research Center

SUMMARY

A scheme is developed for commanding a spacecraft to perform a precise,
predetermined maneuver. The example considered is an Advanced Orbiting Solar
Observatory performing a raster scan over a small celestial area. During the
scan, the position error is required to be less than a prescribed amount at
any given time. To satisfy this requirement the transition between scan lines
must be smooth to avoid both velocity and position errors at the start of the
subsequent scan. To accomplish a smooth transition the state at the ends of
the scan line is specified and the variational form of optimal control theory
is used to find the command that will use the minimum amount of energy. The
form of the command from this solution was also used for the scan lines when
the trajectory was completely specified. It is possible to apply this tech-
nique to any given maneuver composed of specified trajectory segments and to
obtain a smooth transition from segment to segment. The theoretical results
were developed for small angle motions of a single axis controller and, there-
fore, apply for motion within a small area only.

The scheme was tested by having it control a table mounted on a spherical
gas bearing. The control torgue was generated by reaction wheels, and the
command was calculated by a digital computer. The test maneuver was a simple
repetitive scan along two parallel lines.

INTRODUCTION

Some spacecraft missions require that a sensor or other instrument
traverse a precise path over a region of the celestial sphere. For such
missions it may be convenient to fix the instrument to the spacecraft and
maneuver the entire vehicle, as has been proposed for the Advanced Orbiting
Solar Observatory (AOSO). The instruments of this spacecraft must precisely
scan a specific area near or within the solar disk. To do this the vehicle
moves along a series of parallel lines. A transition maneuver transfers the
vehicle from one line to another. The control problem is to design a system
which will smoothly and efficiently drive the vehicle through such a segmented
maneuver and maintain the required position tolerance.

One approach applied to generating the single axis motion along an AOSO
scan line is presented in reference 1. The controller, which was a part of
the control loop, was of several different nonlinear forms and contained



relays or proportional elements with saturation. The reason for choosing a
relay controller was to take advantage of the ideas of minimum time optimal
control and both the relay and the proportional elements with saturation were
used to control the vehicle while it moved along a scan line. The control was
designed to complete the transition maneuver in a minimum time. The control-
ler therefore used the maximum available torque and adjusted the duration
according to the wheel speed to provide a smooth transition to the succeeding
scan. This turn-around is essentially an open-loop control and depends
strongly on a precise knowledge of the system characteristics for proper
operation.

This report describes another approach in which the spacecraft control
always operates as a closed-loop system that follows a signal calculated by
the controller. The characteristics of this system are fixed and independent
of the maneuver required of the vehicle. The control loop is assumed to con-
sist of a reaction wheel drive with feedback proportional to position plus
rate. The controller is therefore required to generate the necessary input
to this control loop to drive the vehicle with the required performance tol-
erance. When a maneuver segment 1s specified by only the end points of the
trajectory, the variational form of optimal control theory is used to solve
for the necessary form of the controller. The same form of controller input
is used for maneuver segments when the trajectory is completely specified so
that the transition between segments will be smooth. The analysis is limited
to a small angle motion about a single axis. For maneuvers involving rota-
tions about more than one axis, the single axis trajectories are superposed.

As a final part of the study, the command scheme was tested experimen-
tally. In the simulation, a table mounted on a spherical gas bearing was
driven by reaction wheels. Optical sensors and rate gyros were used to sense

position and rate. The command signal was generated by an external digital
computer.

LIST OF SYMBOLS

e input veltage to reaction wheel motors

E(s) Laplace transform of ¢

H total angular momentum of vehicle and wheel

i reaction wheel motor current

I vehicle moment of inertia without reaction wheels
J reaction wheel moment of inertia about spin axis
K motor torque gain

Kn motor back-emf gain
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X1,X2,X3

e

torque gain for pitch
torque gain for yaw
position feedback gain
rate feedback gain
pitch position gain
pitch rate gain

yaw position gain

yaw rate gain

cost function integrand
cost function

motor winding resistance
time

control time

external torques
control input

state vector

state vector components
ax/dt

Laplace transform of x
position angle

da/dt

d2a/dt?

position, rate, and acceleration errors
pitch angle and rate

adjoint state vector



) ar/at

A sA2sNa adjoint vector components
W,@ yaw angle and rate
W reaction wheel speed measured relative to vehicle
W dw/dt
Q vehicle angular rate with respect to inertial space
3/du gradient with respect to u
|8/5x|' gradient with respect to x transposed
ANATYSIS

General Problem Description

The problem is to find the command that will force a satellite with some
sort of control system to perform a programmed maneuver within specified
constraints. It is assumed that the characteristics of the control system
and satellite are fixed, so that the problem is to design a controller that
will supply the required commands. A block diagram of the complete system is
shown in figure 1.

The precise raster-scan motion of an A0SO will serve as an example of a
maneuver with a specific repeating pattern over a region of small angular
motion. Two general types of motion are required of each axis of the vehicle.
The first is a specified trajectory given as a function of time. The other
is a motion between end points with the time of transfer but not the trajec-
tory specified. For an AOSO scan, the motion along the scan line would be of
the type when the trajectory is specified, and the transfer between lines
would be of the end-point type. The end-point control problem can be handled
by optimal control theory; the variational form of optimal control theory with
a minimum energy constraint will be used to solve this problem. As a means of
providing a smooth transition between maneuver segments the basic form of the
control that results from the optimal control theory solution will be adapted
to the specific trajectory portion of the motion. The control solution for

the entire scan motion can then be made up of a sequence of commands of the
appropriate type.

In the analysis, a number of engineering choices were made as a
consequence of using optimal control theory to solve the problem of transfer
from one state point to another. The first choice was the form of optimal
control theory to be used. To avoid the use of on-off controller inputs
the variational form of optimal control theory was chosen. This means that
no bound was assumed on the control variable. The second choice was the cost
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function (minimizing time or energy, and possibly some measure of the system
states) for use with the theory. Since the type of maneuver being considered
is to be done in fixed time, the choice was to minimize energy expended in the
reaction wheels for a given maneuver. This cost would relate directly to the
overall weight of the spacecraft through battery size and solar panels
required. Third, there was the choice of including the position and rate
feedback gains as a basic part of the vehicle control system. For the satel-
lite problem being considered, the basic plant components are the moment of
inertia of the vehicle and the reaction wheel torquers. If optimal control
theory with the minimum energy cost is applied to this plant, the results will
generally be of the form of either an open-loop command to the torquers or a
time varying feedback to be incorporated as a part of the plant. Solutions of
this sort can be seen in many books on optimal control theory. However, the
open-loop-type command is unable to cope with a changing environment and is
sensitive to plant characteristics that are poorly defined or only approxi-
mately described by the mathematics. Also a time varying feedback usually
requires an infinite gain at the end of the maneuver. To avoild these problems
and to design a system that was practical from an engineering point of view,
it was decided to use the open-loop-type approach but to define the plant as

a closed-loop system that was inherently stable. It was therefore assumed
that there would be a proportional position plus rate feedback in operation
for each axis of the satellite and the command for the maneuver would be an
external input to this system. Y1he feedbacks allow the vehicle to track the
command trajectory despite external disturbances and irregularities in
component characteristics.

Plant Equations

Figure 1 shows the items considered as a part of the plant to be
controlled. It is assumed that the feedback loops shown in the figure exist;
the values of the gains are not as yet specified. The problem is to be con-
gsidered one axis at a time and the following analysis is for a typical axis.
The vehicle torquing is to be done by reactiocn wheels, the vehicle position
is measured by optical sensors, and the vehicle angular rate is measured by
rate gyros. The equations of motion are derived in sppendix A.

The equations of rotational motion about one axis are (eq. (46))

T4 + J(d+a) =T (1a)
J(d+d) = g (Kga+K g u-Kyw) (1b)

The variable a is the angular position of the vehicle; w 1is the reaction
wheel speed relative to the vehicle; and Te represents some external torque
to the system. The remaining constants pertain to feedback gains and other
vehicle characteristics.

For equations (1a) and (1b) to be used with optimal control theory as
normally formulated, they must be converted to the state space matrix form



= FX + Du (2)

Three states are necessary and are defined as follows:

X1 =
Xo = o'c (3)
X3 = H

where H is the total angular momentum of the vehicle and reaction wheel
system. If the external torgques are assumed to be zero, the total angular
momentum will then be a constant and the plant equation can be written as

X1 0 0
KK,
1] = | - KK K, | K I+J KKm N (1)
R T RI RL
%5 0 0

These eguations are the same as equations (1) but written as a set of first-
order differential equations.

CONTROLLER EQUATIONS

End-Point Control

The end-point controller problem is to find an input (u) to the plant
that will transfer the system state from one point to another with a minimum
power (expended in the reaction wheel motors). The initial states X(0) and
the final states X(f) are given and also the time T during which the
transfer is to be made. The problem then falls into the category of a fixed
time, fixed end-point problem with no bound on the control variable. The
mathematical formulation of the problem is as follows. ’

Plant equation: ¥ = FX + Du (52)

i
I

%(0) at t =0
Boundary conditions: (5b)

X=%(f) at t=T
T T
Cost function: L =f 1 dt =f (i"R)at (5¢)
O (e}

The problem is to determine (u) to minimize L.



The solution to the above problem is given in various forms in the
literature on optimal control. Reference 2 shows a typical development where
a necessary condition for the solution to the problem is Lhat the following
set of matrix differential equations are satisfied.

Plant equation: ¥ = FX + Du (6a)
—_ ' '_
Adjoint equation: N =12 -’a—(ﬁ—i])-li)- y (6b)
ox ox
Control equation: gi [Z + 2! (Fi?Du)} =0 (6c)
u

with boundary conditions (5b). The details of the solution of equations (6)
are shown in appendix B.

Equations (6) are first solved for the control (u) as a function of X
and N from equation (6c) and then for the states and adjoint variables as a
function of time from (6a) and (6b). The results of the solution to the
control equation are given by (eq. (B4))

u = g%-kg - Kgxo - Kgx1 + Kpw (7)

The form of the control as shown in equation (7) has been modified from the
direct solution of equation (6c) where the state xz has been rewritten in
terms of the reaction wheel speed w and the body angular rate xp. The
control in this form is more convenient for a practical problem because w
is directly measurable.

With the substitution of the control (u) into equations (6a) and (6b),
X and A\ can be found as functions of time and the initial and final
boundary conditions on X. The solution to this portion of the problem is
given by equations (B7), (B9), and (B10). The parts of these equations
required to form the control are

N
x1(t) = 2??2 [%1(0) %; - A2(0) %?} + x2(0)t + x2(0)
x2(t) = 2§i2 [%1(0) E?-- A2(0) t] + x2(0) ? (8)
Na(t) = -A2(0)t + A=(0)

J



The adjoint variable boundary conditions are given by

A(0) = ligii [QXZ(O) + % (x1(0)-x1(£)) - (Xz(o)-xz(f)h
S )
re(0) = - %;%Z [g (x2(0) x2(£)) - (x2(0)T4x(0) -xa(£))
J

The trajectories given by equations (8) can now be substituted into
equation (7) to generate the desired command signal for the transfer of the
states.

Trajectory Control

Many ways could be developed for driving the vehicle along the prescribed
path during the trajectory control portion of a scan. But for the scanning
problem it seemed best to have the controller operate essentially the same
during the trajectory control as during the end-point control in order to
provide a smooth transition between the various segments of the scan. There-
fore, the control form is taken to be the same as given by equation (7), which
is repeated below.

u=2—KI‘}\2—KaXl-KdX2+KmUJ (7)

Since there is a prescribed trajectory, x3 and xp are specified as a function
of time, but Az 1s unknown and must be specified as a function of the
trajectory. The relationship between Ao and the state variables can be seen
from equation (B6a)

Xp = - A2 (10)

Equation (10) yields Az as a function of X5, the acceleration of the
vehicle along the prescribed path. The control equation for the path con-
straint problem then becomes

RI

u= - ?F-ig - Kgxi1 - Kgxe + Kgw (11)

Error Analysis

Equation (7) is a command signal (u) to drive a satellite with a
prescribed maneuver. The maneuver specification requires that the error
between the desired trajectories and the actual vehicle motion be small;
consequently, it is desirable to investigate the error behavior of the system
during a maneuver. Because the form of the command is the same for both the
end-point and trajectory controlled motions, one error analysis will do for




both. When the end points of a given segment are specified, the vehicle must
follow a fixed trajectory; hence both commands actually become the trajectory

type-

The error between the commanded and the actual vehicle motion can be
defined by the following:

€ = X3 - .'X]_c (12>
The command equation can be rewritten in the form

u = - %% X1, - Ksxa, - Kaxa, + Ko (13)

Using the error definition and the command equation as written above with the
plant equation (1) gives the following error equation:

g+<%>é+<‘%e=% (1)

This equation can be written in a more convenient form by use of the Laplace

transform.
/s + KK“*\ e(0) + é(0) + Te(S)
\”  RI/ N i
E(S) = (15) -
- | KK KKo
S + — 5 + —
RI RI

The error shown by equation (15) depends only on the initial conditions of the
error and error rate and on the external torques on the vehilcle and not on the
trajectory to be followed. Consequently, the command system developed
simplifies the mechanization of a system considerably because the system
dynamic characteristics may be set (by adjusting the feedback gains) while

the vehicle is holding some fixed attitude or null position to give the
desired error performance. If for example €(0), &(0), and Te(S) are zero,
the maneuver will be carried out without any dynamic error. Further, if a
transient disturbance during a maneuver drives the system away from the
desired path, the control will act to return the vehicle to this path.

Control System Operation

Once the complete trajectory has been defined, the control operates to
follow the trajectory calculated by the controller. At a given time, the
signal from the controller consists of terms proportional to the desired
accelerations, rate, and position plus a term proportional to the back emf
of the reaction wheel motor. This signal is summed with position and rate
feedbacks generated within the plant to form the signal to the reaction wheel
motor. If conditions are ideal, that is, there are no external disturbances,
no initial errors in position and rate, and all the components are exactly
as mathematically described, the position and rate command signals will be



equal and opposite to the feedback signals. Therefore, the input to the
reaction wheel will be only the acceleration and back-emf signals. If, how-
ever, a position or rate error does exist, the position and rate feedback will
cause an error signal which will sum with the acceleration command and drive
the vehicle toward the prescribed trajectory.

The presence of a continuous acceleration command in the control scheme
developed in this report is one of the principal differences between it and
the scheme developed in reference 1. The requirement that the control ele-
ments be of the proportional type in the present study can be considered merely
a matter of choice. If nonlinear elements were present in the position and
rate error signals, as they are in the control developed in reference 1, the
structure of the command signal would remain the same; that is, the acceler-
ation and back-emf terms would remain unchanged, and the rate and position
terms would cancel those generated by the plant under ideal conditions. For
an AOSO type scanning motion, the operation of both controllers during the
scan line motion is basically the same because no acceleration is required.
The command signals differ when an acceleration is required, such as during
the line change maneuver. In the control developed in reference 1, the input
signal is shaped to saturate the input to the torque motor to cause maximum
torque. Various shaping schemes are used to minimize the error at the start
of the subsequent scan. In the present development, the transition between
scan lines is simply a trajectory which requires an acceleration command.

This acceleration command plus the tachometer feedback signal provide exactly
the same input to the reaction wheel as the saturation command required in
reference 1. The difference is that the saturation command employed in
reference 1 is essentially an open-loop operation for which the system char-
acteristics must be known precisely, particularly the variation of torgue with
applied voltage; whereas the command developed in this report includes a posi-
tion and rate error signal which will drive the vehicle toward the desired
trajectory.

EXPERIMENT

The control scheme was tested for a scanning motion similar to that of an
AOS0. An air bearing table with reaction wheel torquers was used to simulate
the spacecraft, and a digital computer was used for the controller. The geom-
etry of the scan motion performed by the air bearing table (fig. 2) was not
precisely the same as an A0SO scan because of hardware limitations.

The basic requirement of the scan motion is that the vehicle rotate
about the yaw axis at a constant rate of 3.6 arc minutes/second over a given
scan width (18 arc min for the experiment) while the pitch position is held
to a particular value. The roll axis is to be held to zero at all times
during the scan. For the motion along a scan line, the path is given as a
function of time. At the end of a scan line the vehicle must reverse yaw
rate and step to a new pitch position (the pitch change is 2 arc min). Only
the end points and the time of transfer are specified for this portion of the
scan, and both the pitch and yaw motion occur simultaneously and must be
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completed in 4 sec. It was also necessary to include start and stop commands
(assumed to be of the end-point type) which would move the vehicle into the
scan from a zero position and return it to this position at the completion of
the scan.

Experimental Equipment

Spacecraft simulator.- The air bearing table (simulating the spacecraft)
with the various drive components onboard is shown in figures 3(a) and 3(b).
This table is supported on a spherical gas bearing. The position reference
for the table was obtained from the two optical sensors shown. Both were
solid state photocell type detectors rigidly attached to the table. Pitch
and yaw signals were obtained from one sensor and roll from the other. The
size of the scan and the accuracy with which the scan could be performed was
limited by the characteristics of the optical sensors. The linearity of the
sensor output was the limit on the accuracy of the scan and was about 0.5
arc minute. After one stage of amplification on the table, the sensor output
signals were sent, through the wires shown on figure 3, to the digital com-
puter through analog to digital (A/D) converters.

The torquers were heavy metal flywheels driven by dc torque motor drivers.
The drive signal for the torguers was generated in the digital computer, con-
verted to an analog signal by a D/A converter, and sent to the torque motors
through dec power amplifiers. No tachometer loop was used with the motors.
The motor characteristics were such that the back-emf effects were small and

the lack of a cancelling signal in the command had little effect.

System damping was provided by a rate gyro package which measured the
angular rates of the table about the three control axis. (The use of gyros
for damping was assumed in the theoretical development.) The position
signals were sent to the computer for error summation but the rate signals
were not. An initial attempt to sum the rate signals in the computer resulted
in poor performance because noise on the gyro output caused difficulties with
the A/D conversion of the signal. To avoid the problem, the rate signal was
fed directly to the dc power amplifiers on the air bearing table and summed
at that point with the computer output. Electrical signals between the air
bearing table and the computer were transmittéd through fine wires to the
table from directly overhead. These wires also supplied electric power to the
table. Since the angle motion of the scan was small and the wires were very
fine, the torques were negligible and the wires provided a great convenilence
because they eliminated the need for batteries and telemetry equipment.

The following is a list of the various inertias of the table and
reaction wheels and of the motor characteristics. For the air bearing table,
the inertias about each of the control axes were different, but the reaction
wheel characteristics were all the same.
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Air bearing table.

Iro11 = 39 kg—m2
Lhiteh = 26 kg-m®
Iyaw = T1 kg-m®

Reaction wheels.

J = 0.011 kg-m®
Stall Torque = 0.28 N-m

Time Constant 15 sec

U

Max. rpm 400 rad/sec

n

Computer.- All of the controller logic for the command signal generation
and the error summation (with the exception of the rate signal) was in the
digital computer and the computer acted as an on-line real-time controller.
The computer used for the experiment was an SDS 920. Figure L4 is a block

diagram of the computer operations for the yaw axis (the pitch axis operations
are similar).

The computer was programmed with a combination of Fortran and symbol
language. The command signal generation and the error summation were in
Fortran. The input-output routines used symbol language. Fortran was
selected so that the program could be modified easily. It was frequently
necessary during the tests to change the gain constant to match the command
signal characteristics to those of the table to minimize performance error.
For the operation of the scanning motion, the frequency with which the computer
cycled through the program from input to output was about 12 Hz. To avoid a
stability problem it was necessary to keep the natural frequency of motion
about each of the table axes below 1 Hz. The effect on testing was to limit
the feedback gains and hence the minimum error of the system.

Test Procedures and Results

One problem of the experiment was the matching of the command signal to
the characteristics of the various components on board the air bearing table
in order to optimize the table performance. Optimization for these particular
test runs is taken to mean adjusting the input command shape so that the
difference between the commanded trajectory and the actual trajectory was as
small as possible. The adjustable quantities on the input command were the
values of the feedback gains and the motor torque gains. Initial values of
these gains were computed from calibration data on the various components and
were then varied as necessary for the best performance.
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Typical outputs for two runs after the gains had been set are shown in
figures 5 and 6. Figures 5(a) and 6(a) present time histories for a scan
motion that went once around the scan loop and then returned to zero, and
figures 5(b) and 6(b) present similar data for a scan that went twice around
the loop. In figure 5 plots of yaw and pitch motion show the basic geometry
of the scan. Figure 6 is a strip chart recording of the motion of the air
bearing table as a function of time. The traces in figures 5 and 6 are out-
puts from the computer D/A converters. In addition to signal noise, the
traces show the quantization of the digital computer.

At the start of a scan 1t was necessary to have the reaction wheels
actively controlling the table on all three axes and holding a zero position.
The zero in this case was not a specified geometric position, but was wherever
the table was oriented. While this zero position was held the computer func-
tion was to close the position loops for the three axes and to generate the
necessary drive signals for the reaction wheel motors. The command input (u)
was zero at this time. The position feedback gains and the system damping
were then set to hold zero as closely as possible. The cycle time of the
digital computer imposed a limit on the position feedback gains and therefore
limited the ability of the system to keep the attitude within a given error.
With the gains at the maximum practical value, the system natural frequency,

from observation of the position error signal, was about 1 Hz. This perfor-
+ha lof+ and ~AF
o o
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figure 6 where time was taken to be zero at the beginning of the scan motion.
During the zero hold phase the control system held the table within about
*10 arc sec. This figure is only a qualitative measure of the operation of
the control system. The sensor output is only linear to 0.5 arc min, and
hence measurements below this figure are only approximate.
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A scan motion was started by having the computer generate the required
command signal to sum into the feedback loop. During the scan all the gains
and control loop characteristics remained as they had been for the zero hold
operation. The response of the air bearing table to the commanded trajectory
is shown by the traces of actual pitch and yaw position. As can be seen from
figure 6, the motion of the table duplicated the required motion very well.
The yaw and pitch error traces show the difference between the commanded
position and the actual position. Ideally, the error curve should be the same
whether or not the table i1s scanning or holding zero. The error traces show
that the control scheme performed quite well in this respect. The pitch axis
in particular held very nearly the same error level during the scan as during
the zero hold operation. The yaw axis performance was also good but some
variation of the error was caused by the scan motion. This error variation is
directly related to the yaw position and repeats throughout the scan, and is
due to a nonlinearity in the yaw sensor output signal. The table control
system was unable to track the resulting signal without an error. The obvious
solution to the problem is a sensor with better output characteristics, such
as a gimbaled device with a high precision pick off. Despite this sensor
problem, the control system was able to hold the yaw error to less than 30
arc sec.
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CONCLUDING REMARKS

In the preceding analysis, a command scheme has been developed which will
permit the precise control of a satellite performing & predetermined maneuver.
The results of the analysis showed that a satisfactory control. scheme would
be to use a proportional type controller to drive the vehicle along the desired
trajectory with zero error. The solution of the problem used the variational
form of optimal control to provide the control input for the maneuver segment
where only the end points of the maneuver and time of transfer are specified.
To provide a smooth transition between segments of a maneuver, this same form
of control was used for the maneuver segment where the trajectory to be fol-
lowed was given. The control included feedback loops to drive the vehicle
back onto the desired trajectory in the case of external disturbance or initial
errors.

The theoretical control scheme was tested for a three axls control system
with an air bearing table to simulate the spacecraft. The table was driven
by reaction wheel torguers and had optical sensors and rate gyros for the
position and rate measurements, respectively. The theoretical command input
to the air bearing table was formulated from the analysis programmed on a
digital computer. The digital computer acted as a signal generator for the
command and also closed the control loops for the vehicle control system, and
was therefore an on-line, real-time controller for the air bearing table. The
maneuver prescribed for the table to perform was a two line raster scan which
was a simplification of that for an AOSO. The test results showed that the
control scheme did force the table to perform the required maneuver and that
the error in tracking the desired trajectory was small.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif. 94035, Jan. 24, 1967
125-19-03-09-00-21
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APPENDIX A
PLANT EQUATIONS

The plant to be controlled is composed of the vehicle inertia, the
reaction wheel torquer, and the position and rate feedback. For one axis of
the vehicle plus the reaction wheel, the total angular momentum with respect
to inertial space, expressed in the vehicle coordinate system, is

H =10 + J(0+w) (A1)

where I 1is the total moment of inertia of the vehicle without the reaction
wheel, J dis the reaction wheel moment of inertia, and w is the wheel speed
measured relative to the vehicle. Differentiating equation (Al) with respect
to time and equating the momentum change to the external torques, with the

assumption of small angular motion (O~ &), we obtain the equation of motion

Te = I8 + J(G+d) (A2)

The reaction wheel is driven by a dec motor and its acceleration when
nt is applied is given by

Ki = J(8+0) (A3)

The current to the motor is related to the applied voltage by equation (AL).
The applied voltage is taken to be the sum of the position and rate feedback,
and an input command (u). The term Kyw is the back emf of the motor.

e = iR + Kpw = Kq + Kg& + u (AL)

It has been assumed that the feedback gains in equation (A4) are linear. This
assumption 1s, in general, not required but makes the analysis simpler. The
only requirement for the solution 1s that the feedback characteristics be
known.

The input current to the reaction wheel motors may be expressed as
i= % (K, a+Kgd+u-Kmw) (A5)
Equation (A2) combined with equations (A3) and (A5) gives the following set
of equations for describing the rotational motion of one axis of the plant.

T. = I8 + J(a+®) (A63)

e

(K a+Kgd+ru-Kyw) = J(8+0) (A6D)

e e
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APPENDIX B
END-POINT CONTROL SOLUTION

The required steps for solving the end-point control problem are to solve
equation (6c) for (u) as a function of the state variables (X) and the adjoint
variables (N\). The control (u) is then substituted into equations (6a) and
(6b) and the resulting set of differential equations solved for (X) and (A)
as a function of time and the boundary conditions on (X).

To solve the control equation it is necessary to know the cost-function
integrand in terms of the problem variables. Using equations (5c¢) and (A5)

2

T

L =f %[Kuxl + Kng + u - % Xa + % (I+J)_X2:| at (Bl)
o

Equation (4) and the integrand of equation (BL) may now be substituted into

equation (6c) to solve for (u).

u='2£17\2—Kle-<Kd+Km;}——J>X2+%X3 (BE\)
The control (u) is thus a function of one of the adjoint variables A» and
all three of the state variables. Of these four variables, only (xs), the
constant angular momentum, is known. In order to use the control it will be
necessary to solve for the adjoint variable, Az, and the trajectory to be
followed as a function of the end points and the time of control.

Equation (B2) can be simplified if it is noted from the angular
momentum equation that

Kpw = %% X3 - Ky lgi X2 (B3)

Substituting equation (B3) into equation (B2) gives
u = 5%‘K2 - Koxa1 - Kgxa + Kpw (Bh4)

This equation shows that the desired control is composed of four terms, two
of which effectively cancel the position and rate feedback as far as the
reaction wheel input is concerned. The remaining terms include one which can
be considered a tachometer feedback to match the voltage of the back emf and
one which is due to an unknown term As.

The next step is to solve equations (6a) and (6b) for X and A as
functions of time. They will be given in terms of the initial and final
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boundary conditions on (X). If the indicated operations are performed on
equation (6b), the following equations result:

, : )
N | Y- .
e = Ap + 2?-+§?1ﬂ?>x2-2(@i+1%1%?>[%§xl
Ka L fm 14 Ky ? (55)
R T > *2 ~ ggXe ¥ %}
SRR AR IE RC A E DRRE R

P

If the control (u) given by equation (B2) is now substituted into equations
(B5) and (4), the plant and adjoint equations reduce to the following simple
form:

Plant equations X1 = Xp
. K2 >
Xo = - | =—= ] A Bba
2= - () (568)
Xa = O

Adjoint equations Xl =0
Ao = A1 (Btb)
Az = O

The effect of the control has been to reduce the plant equations to those of
a simple rigid body with a torque proportional to Az. The adjoint equations
are also simple and can be readily integrated and substituted into the plant
equations to give the desired trajectories. Solving the adjoint equation
gives

Ay = A1(0) (BTa)
Az = -A1(0)t + A2(0) (B7b)
As = As(0) (BTc)

with the unknown boundary conditions xi(O). Substituting equations (B7)
into (Bba) gives

17



}.(1 = Xpo (B8a)
Xp = - <é§i2> [-%1(O)t + %2(0)] (BSDb)

0 (B8e)

X3

Integrating these equations gives

%y = K [x1(0> £ - (o) 35] + x2(0)t + x1(0) (B9a)
2RI 2

ve = 22 Dalo) £ - 0a(08] + (o) (Bb)

x3 = x3(0) = H (B9c)

Both the initial and the final boundary conditions for the state variables and
the control time T +to the end point X(T) are known for equations (B9).
Hence, the initial conditions on the adjoint variables can be found.

7(0) = iﬁiﬁg [2 x2(0) + 2 (x2(0)-xa(2)) - (xZ(O)-X2(f))}
5 (B10)
h2(0) = - = 2 (xe(0)-xale)) - (X2(0>T+xl(0)-xl(f>)}
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Figure 2.- Plots of scan motion.
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(b) Scan motion; two loops.

Figure 5.- Real-time record of yaw and pitch position during a scan run.
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Figure 6.- Strip chart recording of scan motion.
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